
Submitted to IEEE PVG 2003

Parallel Cell Projection Rendering of Adaptive Mesh Refinement Data

Gunther H. Weber1,2,3 Martin Öhler2 Oliver Kreylos1,3 John M. Shalf3 E. Wes Bethel3

Bernd Hamann1,3 Gerik Scheuermann2

1 Center for Image Processing and Integrated Computing (CIPIC), Department of Computer Science,
One Shields Avenue, University of California, Davis, CA 95616-8562, U.S.A.

2 AG Graphische Datenverabeitung und Computergeometrie, FB Informatik, University of Kaiserslautern,
Erwin-Schr̈odinger Straße, D-67653 Kaiserslautern, Germany

3 Visualization Group, National Energy Research Scientific Computing Center (NERSC),
Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, U.S.A.

Keywords: volume rendering, adaptive mesh refinement, load bal-
ancing, multi-grid methods, parallel rendering, visualization

ABSTRACT

Adaptive mesh refinement (AMR) is a technique commonly used
in numerical simulations of a wide variety of scientific and engi-
neering phenomena or processes. Despite its inherent hierarchical
nature, only few visualization algorithms exist that directly use the
AMR structure,e.g., for efficient volume rendering schemes. Most
existing approaches for AMR data make extensive use of special-
purpose graphics hardware. We present an efficient, purely soft-
ware approach for direct volume rendering of AMR data based
on cell-projection utilizing parallel supercomputers or PC clusters.
This class of machines is the same as that used to perform the AMR
simulations. Thus, the used resources are readily available to users.
We discuss a framework that employs this renderer for parallel ren-
dering of AMR data. We introduce and compare several distribution
schemes.

1 INTRODUCTION

Physical phenomena can vary widely in scale. Large regions in
space can exist where a quantity varies only slightly, and thus can
be adequately represented at low resolutions. Other regions may
require higher resolutions to capture rapid changes. In 1984, AMR
was introduced to computational physics by Berger and Oliger [3],
aiming to add the ability to adapt mesh resolution during a simula-
tion approach using structured meshes. AMR represents a spatial
domain as set of nested structured grids of increasing resolution.
Berger and Oliger [3] used a scheme where refining grids can be
rotated with respect to a parent level. A modified version of their
algorithm was later published by Berger and Colella [2], where
all refining grids are axis-aligned with respect to the parent level.
AMR has become increasingly popular, also outside the computa-
tional physics community. Today, it is used in a large variety of
applications. For example, Bryan [4] used the technique to simu-
late astrophysical phenomena using a hybrid approach combining
AMR grids and particles.

Based on an efficient software cell-projection volume renderer,
we have developed a framework for parallel volume rendering of
AMR data. Even though cell-projection [18] was introduced pri-
marily for rendering unstructured meshes, it also leads to effi-
cient implementations for structured meshes. Our method parti-
tions an AMR hierarchy using a k-d tree [1]. This partition is
view-independent and computed offline in a preprocessing step. We

have developed and compared several partition strategies which we
briefly summarize.

Uniform root-level subdivision ignores the hierarchical nature of
AMR data and partitions a root level into blocks of constant
size. Refined cells are handled during rendering by recursive
descending into finer levels.

Weighted root-level subdivision partitions a root level into
blocks at approximately constant computational cost. The
AMR hierarchy is only considered to compute weights. Lo-
cations for subdivision are chosen independently from bound-
aries of refining grids. During rendering refining grids are
handled by descending recursively.

Homogeneous subdivisionsubdivides AMR levels recursively
until each part only covers one grid of a given level,i.e., until
it corresponds to a region represented at constant resolution.
The resulting grid parts are distributed evenly among proces-
sors.

Weighted homogeneous subdivisionpartitions AMR levels in
the same way as homogeneous subdivision. The computa-
tional cost for rendering a constant-resolution region is esti-
mated and associated with that region as itsweight. Grid parts
are distributed among processor such that the sum of associ-
ated weights is approximately the same for all processors.

Our framework supports rapid development and testing of new dis-
tribution strategies and volume rendering techniques.

2 RELATED WORK

Initial work in AMR visualization focused on converting AMR data
to suitable conventional representations and visualizing these. Nor-
manet al. [23] described a method that visualizes AMR data using
standard toolkits. Their method converts an AMR hierarchy into
an unstructured grid composed of hexahedral cells. The resulting
unstructured grid is then used for visualization utilizing standard
algorithms. Observing that by converting AMR data to an unstruc-
tured mesh, its main advantage, the implicit definition of grid con-
nectivity, is lost, Normanet al. extend VTK to handle AMR as
first-class data structure. Max [21] described sorting schemes for
cells for volume rendering and described their application to AMR
data. Ma [17] described parallel rendering of structured AMR data
resulting from simulations using the PARAMESH framework [20].
He described two approaches for volume rendering of AMR data.
One method resamples a hierarchy on an uniform grid at the finest
resolution. The resulting grid is evenly subdivided and each part

Submitted to IEEE PVG 2003

Figure 1: AMR hierarchy consisting of five grids and three levels.
Level boundaries are shown as bold lines.

rendered on an individual processor. A second method preserves
the AMR structure.

Weberet al. [27] presented two volume rendering schemes for
Berger-Colella AMR data. One scheme is a hardware-accelerated
renderer for previewing; the other scheme allows progressive re-
finement rendering of AMR data based on cell projection [18]. We-
beret al. [28] described a method to extract isosurfaces from AMR
data. To avoid re-sampling, they interpret locations of cell-centered
data values as vertices of a dual grid. Resulting gaps between hi-
erarchy levels are filled via a generic stitching scheme. Weber
et al. [29] discussed using dual-grids and stitch-cells to define
a consistent interpolation scheme for high-quality volume render-
ing of Berger-Colella AMR data. Kreyloset al. [12] described
a framework that partitions a Berger-Colella AMR hierarchy parti-
tioned in blocks of constant resolution using a k-d tree. Resulting
blocks are distributed among processors and rendered using either
a texture-based hardware-accelerated approach or a software-based
cell-projection renderer. Ligockiet al. [16] describedChombo-
Vis 1, a framework for the visualization of hierarchical computa-
tions using AMR.

Kähler and Hege [8, 9] introduced a scheme to partition Berger-
Collela AMR data in blocks of constant resolution. Aiming to min-
imize the number of generated constant-resolution blocks they uti-
lize a heuristic based on assumptions concerning the placement of
refining grids by an AMR simulation. K̈ahleret al. [10] devel-
oped a method that uses AMR hierarchies for rendering sparse vol-
umetric data. Given a transfer function, this method computes a
transfer-function-specific AMR hierarchy for a volume data set and
renders it using the algorithm of K̈ahler and Hege [8, 9]. K̈ahleret
al. [7] used a set of existing tools to render results of a simulation
of a forming star. By specifying a transfer function and a range
of isovalues Parket al. [24] produced volume-rendered images
of AMR data based on hierarchical splatting, see Laur and Hanra-
han [13]. Their method converts an AMR hierarchy to a k-d-tree
structure consisting of blocks of constant resolution which are ren-
dered back-to-front using hierarchical splatting.

3 AMR DATA FORMAT

Figure 1 shows a simple 2D AMR hierarchy produced by the
Berger–Colella method. The basic building block of ad–dimen-
sional Berger-Colella AMR hierarchy is an axis-aligned, structured

1Joint effort of the Applied Numerical Algorithms Group and of the Vi-
sualization Group at LBNL. Seehttp://seesar.lbl.gov/anag/
chombo/chombovis.html for further details.

rectilinear grid. Considering the 3D case, each gridg consists of
hexahedral cells and is positioned by specifying its local originog.
AMR typically uses acell-centered data format,i.e., dependent
function values are associated with cells/cell centers. Data values
are stored in arrays as location and connectivity can be inferred
from the regular grid structure.

An AMR hierarchy consists of several levelsΛl comprising one
or multiple grids. All grids in the same level have the same cell
size. A hierarchy’sroot level Λ0 is the coarsest level. Each level
Λl may be refined by a finer levelΛl+1. A grid of a refined level
is referred to as acoarse grid and a grid of a refining level as a
fine grid. A refinement ratio r specifies how many fine grid cells fit
into a coarse grid cell, considering all axis-directions. This value is
always a positive integer. A refining grid refines an entire levelΛl,
i.e., it is completely contained in the region covered by that level but
not necessarily in the region covered by a single grid of that level.
Each refining grid can only refine complete grid cells of the parent
level, i.e., it must start and end at the boundaries of grid cells of the
parent level. The Berger-Colella scheme [2] requires the existence
of a layer with a width of at least one grid cell between a refining
grid and the boundary of the refined level.

4 DESIGN CONSIDERATIONS

One can differentiate volume rendering methods by their underly-
ing illumination models (i.e., the “optical properties” of transfer
functions) and by their operation inimage or object space. Two illu-
mination models are widely used in volume rendering: The absorp-
tion and emission light model, described, for example by Max [22]
and the Phong-based light model by Levoy [14]. We chose the ab-
sorption and emission light model as it leads to efficient implemen-
tations. Within cells, we use constant interpolation,i.e., the sample
value located at the cell center is assigned to all positions within
the cell. This allows an exact evaluation of the light-model and pre-
serves the AMR hierarchy in rendered images. To achieve more
efficiency, we chose orthographic projection over perspective pro-
jection.

Image-space-based algorithms, including the commonly used
ray casting algorithm, see Sabella [26], operate on pixels in screen
space as “computational units,”i.e., they perform computations on
a per-pixel basis. Object-space-based methods, like cell projection,
see Ma and Crockett [18], operate on 3D grid cells. Parallelizing
volume rendering can be done in image space or in object space,
see Crockett [5]. Image-space parallelization subdivides the im-
age plane to distribute computing among multiple processors. Each
processor renders a subset of pixels in an image. Object-space par-
allelization subdivides the domain of a data set and assigns grid
cells to processors. We chose object-space based parallelization,
as the hierarchical nature of AMR data facilitates efficient subdivi-
sion of the grids. We chose cell-projection as an object-space-based
rendering methods, as it leads to an elegant implementation of sub-
division of the domain. Furthermore, using cell-projection eases
reaction to changes in resolution,i.e., it is possible to render finer
grids at a higher resolution.

For implementation of the parallel renderer we chose the Mes-
sage Passing Interface (MPI) library over the Parallel Virtual Ma-
chine (PVM) framework. MPI is commonly used in AMR sim-
ulations, thus making our framework more compatible with other
applications, including numerical simulation. Furthermore, MPI is
a de facto standard for parallel supercomputers. Vendor-specific
adaptations for different architectures exist, supporting the utiliza-
tion of specific hardware optimizations by linking to a vendor-
provided library. Instead of adopting the classic master-slave
model, we chose a symmetric implementation to avoid communi-
cation bottlenecks. Each processor computes the complete distribu-
tion of grid parts and selects a subset based on its index. However,

2

Submitted to IEEE PVG 2003

Front−facing

Back−facing

t in

t out

Scan conversion

Single grid cell

Framebuffer

Figure 2: Cell-projection process.

y

x

z

(a)

y

x

z

(b)

y

x

z

(c)

y

x

z

(d)

y

x

z

(e)

y

x

z

(f)

Figure 3: Rendering order of grid cells — all components oftv be-
ing positive. First, all back-facing faces of the first layer of cells in
each direction are rendered (a) – (c). Second, all cells are rendered.
The order in which axes are handled (first-z−-then-x−-then-y or-
der) is arbitrary. Only the order according to which cells are han-
dled along an axis is important.

we are using a binary-tree image compositing scheme that pairs
processors in each compositing step. In each step, one processor of
each pair receives an intermediate partial image from its “neighbor”
and performs a compositing operation. The final composited image
resides in the buffer of processor zero.

5 EFFICIENT SOFTWARE-BASED CELL -
PROJECTION

5.1 Overview
Cell projection [18] is an object-space-based volume rendering
method, similar in nature to ray casting. Both methods trace rays
through a volume, accumulating light along the path of a ray. Ray
casting operates on a per-pixel basis, using one ray for each pixel.
Cell-projection-based methods construct “ray segments” for cells
and merge them with existing ray segments.

Usually, a priority queue is maintained for each pixel collect-
ing all ray segments contributing to that pixel. Figure 2 shows
the fundamental idea of cell projection. Boundary faces of all
cells are divided into three groups,front-facing faces (with normals

directed toward the viewer) andback-facing faces (with normals
directed away from the viewer). First, the back-facing faces are
scan-converted into a buffer. For each pixel influenced by the cell,
this buffer holds a depth corresponding to an exit parameter value,
calledtout, along the ray. Second, the front-facing faces are scan-
converted. For each generated pixel, the depth corresponding to the
entry parameter value, calledtin, along the ray is computed. The
entry parameter valuetin and corresponding scalar value are read
from the buffer, and the ray segment reaching fromtin to tout is
constructed. Usually, this ray segment is then inserted into the ray-
segment queue of the corresponding pixel and merged with adjacent
ray segments in that queue.

When cells are sorted using, for example, the scheme of Max
[21] and rendered in back-to-front or front-to-back order, the queue
for collecting ray segments is not necessary. Newly generated ray
segments are always adjacent to already computed ray segments
and can be composited directly in the frame buffer. Another advan-
tage of this method is that it allows us to avoid duplicate scan con-
version of a cell’s boundary faces. When rendering unsorted cells,
back-facing and front-facing faces must be rendered to determine
correct ray-segment length. In contrast, when rendering presorted
cells, it is sufficient to render the front-facing faces of a cell. All
back-facing faces are already rendered as front-facing faces of cells
“behind” the current cell.

5.2 Cell Sorting and Front-face Determi-
nation

For AMR grids it is simple to determine correct back-to front cell
order. For orthographic projections, rendering order can be de-
termined based on view direction. Cells are enumerated by three
nested loops, one loop for each axis. The order according to which
axes are handled is arbitrary. Along each axis, cells must be handled
in correct order. For each loop this order can be determined based
on the sign of the component of the vectortv (a vector directed
toward the viewer), according to the axis handled by the loop. If it
is positive, cells are enumerated in ascending axis direction. If it is
negative, cells are enumerated in descending axis direction. If if is
zero, an arbitrary choice is made.

Before rendering cells and generating ray segments, all cell faces
lying on the up to three back-facing boundary-faces of the overall
AMR grid that are not view-perpendicular must be scan-converted.
These are the back-facing faces of cells that do not lie in front of
any grid cell. Figures 3 (a)–(c) illustrate the procedure for a choice
of tv where all components are positive. If one component oftv is
zero, the corresponding face is perpendicular to the viewing direc-
tion and discarded. Subsequently, the front facing faces of all cells
are scan-converted. Ray segments are generated and composited
in the frame buffer. Figure 3 shows the order of scan-conversion

3

Submitted to IEEE PVG 2003

tv

Viewer

Viewing plane

(a)

3

5

1
0

2

4

z
x

y

(b)

Figure 4: Determining front- and back-facing faces. (a) The vec-
tor tv is perpendicular to the viewing plane, pointing toward the
viewer. (b) Face numbering used in Table 1.

Face # Front-facing Back-facing Perpendicular
0 tvz < 0 tvz > 0 tvz = 0
1 tvx > 0 tvx < 0 tvx = 0
2 tvz > 0 tvz < 0 tvz = 0
3 tvx < 0 tvx > 0 tvx = 0
4 tvy < 0 tvy > 0 tvy = 0
5 tvy > 0 tvy < 0 tvy = 0

Table 1: Criteria used for checking whether a cell face is front-
facing, back-facing, or should not be rendered.

used for boundary faces and cells when all components oftv are
positive.

When dealing with more general grid cells, each boundary face
must be checked individually whether it is back-facing or front-
facing. This step can be done, for example, by using the scalar
product between face normal andtv. For axis-aligned rectilinear
grids, this test can be performed based on the viewing direction.
Figure 4 shows the numbering of the faces of a cell of a rectilinear
grid. Table 1 lists the criteria used to determine whether a face is
front- or back-facing. Front- and back-facing faces are the same for
each cell in all grids. It is sufficient to determine front-facing faces
once.

5.3 Boundary Face Scan-conversion
We render cell boundary faces using a modified version of the poly-
gon scan-conversion algorithm developed by Gordonet al. [6]
that is based on a method developed by Kaufman [11]. Before
rendering a polygon, its vertices are projected onto the viewing
plane, and point coordinates are rounded to integers. During the
scan-conversion process it is assumed that coordinates are specified
counter-clockwise. Gordonet al.’s method starts by determining
“critical points” of a polygon,i.e., vertices that constitute a local
minimum or are first of a set of vertices that together form a lo-
cal minimum iny-direction. Boundary faces of rectilinear cells are
convex quadrilaterals and have only one minimum. If two adjacent
vertices share the same value for they-coordinate,i.e., if they are
connected by a horizontal line segment, we consider the vertex with
the lower index to be the critical point. During the determination
of critical points we also detect polygons that span one pixel iny-
direction and discard them.

The algorithm starts by inserting the left minimum and right
maximum edge originating from the critical point vertex into an
active-edge table (AET). During the scan-conversion process this
data structure holds the left and right edge intersecting the current
scan-line. For general polygons, considered by Gordonet al. [6]
this is an array, as the scan-line can intersect several polygons.

Figure 5: Scan-converted polygon illustrating rules used to deter-
mine whether a pixel belongs to the polygon.

Our scan-converter is optimized for convex quadrilaterals and only
stores two pointers to AET elements since a convex quadrilateral in-
tersects a scan-line only twice, except for horizontal boundary lines
coinciding with a scan-line. For each scan-line,x-coordinates and
depth on the left and the right side of the polygon are calculated
by linear interpolation. Depth information is not rounded, as ex-
act values are needed for the determination of ray-segment lengths.
If a scan-line consists of only one pixel of the polygon it is dis-
carded; otherwise, depth values are computed for all pixels between
thex-coordinates by linear interpolation. Ray segments are created
by reading the previous depth value and applying the illumination
model. If a scan line coincides with the end of an edge, the corre-
sponding pointer referring to the AET is replaced with its successor
until that turns down.

When generating images with a cell-projection method it is im-
portant that rasterized polygons sharing an edge do not overlap.
Thus, special care must be taken at polygon boundaries. We use
these rules:

R1. Integer intersection points of a polygon edge with a scan-line
belong to a polygon, if they lie on its left edge. If they lie on
its right edge, they do not belong to the polygon.

R2. Non-integer intersection points of a polygon edge with a scan-
line are rounded down. The corresponding pixel belongs to a
polygon if it lies on its right edge. If it lies on its left edge, it
does not belong to the polygon.

R3. If a pixel corresponds to intersection points on the left and
right edges of a polygon it lies outside the polygon.

The white center polygon in Figure 5 illustrates these rules: The
pixel at the lower-left corner of the polygon has an integer intersec-
tion point and lies on its left edge. Consequently, accroding to R1,
it belongs to the polygon. According to R1, the pixel at the upper
right corner of the polygon does not belong to the polygon. Consid-
ering R2, all pixels with non-integer intersection points on the left
and lower polygon edge do not belong to the polygon. (They be-
long to the neighboring polygon.) All pixels bordered by the upper

4

Submitted to IEEE PVG 2003

and right polygon edges do belong to the polygon. The pixel at the
upper-left corner lies on the left and the right edges of the polygon
and does not belong to the polygon (R3). During scan-conversion,
we maintain a list of all positions modified,i.e., covered by a cell.
This list is used in the compositing scheme, see Section 7, and to
speed up clearing the frame buffer by only erasing pixels modified
during rendering.

5.4 Ray-segment Generation
We use constant interpolation in individual cells,i.e., the sample
value associated with a cell is assigned to all positions in the cell.
Consequently, all points in a cell have the same optical properties,
i.e., emission color and opacity. It is possible to solve the differen-
tial equations for light absorption and emission analytically in a cell
and obtain “correct” opacity and emission values for a ray segment
intersecting the cell. Each ray segment in a cell is characterized
by an entry parameter valuetin, i.e., the distance from the viewing
plane at which a ray “enters” the cell measured along the ray, and an
exit parameter valuetout, i.e., the distance from the viewing plane at
which the ray “exits” the cell. The value oftin is obtained by scan-
converting the front-facing faces of a cell. The value oftout is read
from the frame buffer containing the results from scan-converting
the front faces of cells (behind the current cell) that coincide with
the back-facing faces of the current cell. Emission color and opac-
ity are defined by the cell’s associated scalar value via a transfer
function.

Max [22] described the the absorption and emission light model
using an extinction coefficientτCell instead of opacityαCell per unit
length. This extinction coefficient can be obtained from the opacity
as

τCell = − ln(1− αCell) . (1)

Using Max’s equations from [22] we obtain the transparency from
tin to an arbitrary parameter value along the ray in the cell as

TCell(s) = exp

(
−

∫ s

tin

τCelldk

)
= (1− αCell)

s−tin (2)

The opacity of a ray segment is

αSeg = 1− TCell(tout) = 1− (1− αCell)
tout−tin . (3)

Furthermore, the color (intensity) of a ray segment can be computed
as

CSeg =

∫ tout

tin

CCellτCellT (s)ds = CCellαSeg , (4)

using again equations from [22]. Combining contributions of in-
dividual ray segments is equivalent to compositing pixels with a
color CSeg and an opacityαSeg using pre-multiplied alpha values,
see Porter and Duff [25],i.e.,

αCombined=1− (1− αSeg,front)(1− αSeg,back) and

CCombined=αCombined((1− αSeg,front) CSeg,back+ CSeg,front) .
(5)

6 PARTITIONING AND LOAD-BALANCING

6.1 Overview
Our method stores a domain partition as a k-d tree [1]. A k-d
tree is a generalization of a binary search-tree to arbitrary dimen-
sions. Each level partitions a domain in two regions along an axis-
perpendicular plane. The “left” sub tree corresponds to points in
space whose coordinates in partition direction have values smaller
than or equal to the partition position. The “right” sub tree cor-
responds to points whose coordinates in partition direction have

Figure 6: Uniform subdivision of root level into equal-sized blocks.

values larger than the partition position. The subdivision direction
is usually alternated between the three coordinate axes in the 3D
case. We skip subdivision directions, when no “sensible” subdi-
vision position along that direction exists. When using an object-
space-based subdivision for parallelizing volume rendering, regions
must be rendered in correct order. Using k-d trees makes it possi-
ble to determine this order simply. At each node of the k-d tree,
the domain is subdivided along an axis-perpendicular plane. The
compositing order can be determined by considering the compo-
nent oftv corresponding to the partition direction. If it is positive
the left sub tree must be rendered first; if it is negative the right sub
tree must be rendered first; and if it is zero both sub trees can be
rendered in arbitrary order. We assume that subdivision schemes
are view-independent. It is sufficient to compute a k-d tree sub-
division once per data set. We compute subdivisions offline in a
pre-processing step. To assign regions of the domain,i.e., leaves of
the k-d tree, to individual processors they are numbered in render-
ing order. We assign a set of sequentially adjacent regions to each
processor.

6.2 Uniform Root-level Subdivision
Given an AMR hierarchy, this scheme constructs a k-d tree with
a user-specified number of levels. Each node of the tree splits its
associated region into two parts of nearly equal size,i.e., number
of cells. Figure 6 shows uniform subdivision of the AMR hierarchy
from Figure 1.

Since uniform subdivision ignores grid boundaries, refined cells
must be handled during rendering. We implemented a solution
method based on recursively descending the hierarchy. While ren-
dering a data set, a test is performed for each grid cell checking
whether it is refined by the next finer level. If a finer level exists,
ther3 (r being the refinement ratio) refining grid cells are rendered
instead of the current coarser cell. The correct rendering order of
refining cell is determined using the criteria described in Section 5.
Each refining cell is checked recursively to determine potential fur-
ther refinement.

6.3 Weighted Root-level Subdivision
Similarly to uniform subdivision, this scheme ignores grid bound-
aries of an AMR hierarchy during subdivision. The goal of this ap-
proach is to obtain a subdivision of a given AMR hierarchy into re-
gions that will imply approximately equal computational cost. With
each region we associate an estimate of computational cost for ren-
dering, used as a weight. A subdivision plane is chosen using a
greedy method as follows: Initially, the subdivision plane is placed

5

Submitted to IEEE PVG 2003

Figure 7: Weighted subdivision of root level, ignoring grid bound-
aries.

CPU type c0 c1 c2

1.0 GHz AMD Athlon 1.00 0.60 0.50
1.2 Ghz AMD Athlon 1.00 0.65 0.54
1.4 GHz AMD Athlon 1.00 0.71 0.58
2.4 Ghz Intel Xeon 1.00 0.63 0.54
375 MHz IBM Power 3 1 0.77 0.71

Table 2: Constants for weighted distribution for different proces-
sors.

in the middle of the current domain. Weights are computed for the
two subdomains. If both subdomains have equal weight, the sub-
division plane has optimal position and the algorithm terminates.
Otherwise, the plane is moved into the subdomain with the larger
associated weight. Moving the plane in this way decreases com-
putational cost for that subdomain while increasing computational
cost for the other one. We calculate the weight difference before and
after moving the plane, and continue moving the plane as long as
it decreases the weight difference. Our algorithm terminates when
moving the plane increases the difference instead of decreasing it,
or the partition plane would reach the border of a subdomain.

We estimate computational cost of a subdomain based on the
number of cells in it. We must also consider the fact that render-
ing refined cells is computationally more expensive than rendering
unrefined cells. Therefore, we assign a weight of one to unrefined
cells of the root level,i.e., c0 = 1. Based on an application specific
benchmark it is possible to determine relative weights for refined
cells. Table 2 shows weights for an AMR hierarchy consisting of
three levels. The constants specify the times necessary to render
a single cell of a given AMR level with respect to rendering times
for a single cell of the root level. These constants are measured by
rendering a cell of the appropriate level from a viewing direction
of tv = (1, 1, 1). Viewing a cell in this direction no cell faces are
axis-perpendicular. A maximum number of faces must be rendered
and the “footprint” of the cell on the screen has maximum size. The
associated weightw of a subdomain is

w =

#Level∑
l=0

nlcl , (6)

wherenl is the number of levell cells. This sum is computed by
recursively descending in the hierarchy. Figure 7 shows weighted
subdivision of the root level for the AMR hierarchy from Figure 1,
using relative cell weights ofc0 = 1, c1 = 0.75 andc2 = 0.7.

Figure 8: Homogeneous subdivision of AMR hierarchy.

6.4 Homogeneous Subdivision
Both sub-division strategies discussed so far ignore the hierarchical
nature of AMR data during subdivision. Only the impact on com-
putational cost for rendering a grid part is considered when using
weighted root-level subdivision. Resulting regions usually encom-
pass several grids of the original hierarchy, leading to data duplica-
tion and poor memory utilization. By considering grid boundaries
during the subdivision step, it is possible to partition an AMR hier-
archy into “homogeneous” blocks,i.e., blocks represented at con-
stant resolution. Each block contains only cells from one grid of the
original AMR hierarchy. This property allows us to avoid data du-
plication. Due to the homogeneous nature of blocks, it is possible to
render them efficiently, avoiding tests for refinement of individual
cells and recursion.

Subdivision of an AMR data set uses only information about
the hierarchical structure of AMR data. Actual data values for in-
dividual grids do not need to be loaded, and subdivision can be
performed on a single machine, requiring only a small amount of
memory. We construct the k-d tree level by level. For levell, we
locate all leaf nodes of the current k-d tree that correspond to grids
of level l − 1. Each of these leaves is replaced by a k-d tree that
is constructed as follows: We determine all grids of levell that
overlap the leaf region,i.e., the region associated with the current
leaf. Since grids may only partially overlap the leaf region, they are
clipped against the leaf region to obtain the grid part contained in
the leaf region. Along the current subdivision direction, we store
every position in subdivision direction where a refining grid starts
or ends.

After sorting the resulting list and removing duplicate elements,
we choose the middle element of the resulting list as subdivision po-
sition. (If the list contains an even number of elements, we choose
the smaller of the two middle elements as subdivision position. If
the list is empty, we skip the corresponding subdivision direction.)
For each of the two regions associated with a subtree of the current
leaf, we find all grids that overlap that region and clip them against
the boundaries of that region. Alternating between the three axis
directions, we repeat this process recursively until all leaf regions
are homogeneous and overlap only a single grid. For the root level,
we start with an empty tree that covers the complete domain and
construct a k-d tree analogously to creating the tree for a leaf.

By terminating k-d tree construction after a user-specified fixed
level-number it is possible to render only a part of an AMR hi-
erarchy. Figure 8 shows the results of homogeneous subdivision
of the AMR hierarchy from Figure 1. Grid parts are numbered in
back-to-front order and distributed among processors. Each proces-
sor loads the complete partition information and renders nearly the
same number of sequentially numbered grid parts.

6

Submitted to IEEE PVG 2003

Figure 9: Parallel compositing scheme.

6.5 Weighted Homogeneous Subdivision
Weighted homogeneous subdivision uses the same k-d tree subdivi-
sion as homogeneous subdivision. Instead of distributing resulting
grid parts evenly among processors, an estimate of computational
rendering cost is used as a weight for each leaf of the k-d tree.
This weight is obtained by multiplying the number of grid cells
in the leaf region by the weight of a single cell of the appropri-
ate level. The weight of a single cell is the same as the one used
in weighted root-level subdivision, see Section 6.3. Regions are
distributed among processors using a greedy method. To achieve
nearly equal processor utilization, each processor needs to render
regions with a total weight ofwIdeal =

wTotal
nProcessors

, wherewTotal is the
computational cost for rendering the complete AMR hierarchy,i.e.,
the sum of all weights of all leaves of the k-d tree. Each processor
has an assigned set of sequentially adjacent leaves. Processorp se-
lects its assigned regions as follows: Ifk is the last leaf rendered
by processorp − 1, processorp adds the remainder of that region,
i.e., the part that was not rendered by the previous processor, to its
“assignment list.” (An exception to this rule applies to the first pro-
cessor. It does not need to render any partial regions.) Starting with
regionk+1, processorp adds regions to its assignment list until the
weight of the current region exceeds the differencewIdeal− wCurr.
During each step,wCurr denotes the sum of weights of all regions
already assigned to processorp.

To achieve a more uniform distribution of weights, this region is
subdivided as follows: First, we choose the direction perpendicu-
lar to the plane consisting of the least number of cells as partition
direction. We divide the differencewIdeal− wCurr by the weight of
a slice in partition direction (i.e., , the number of cells in the slice
multiplied by the cell weight of the appropriate level). The result
is rounded to obtain the number of slices rendered by the current
processor. The remaining slices are rendered by the next proces-
sor. (An exception to this rule applies to the last processor which
renders all remaining regions.)

Each processor computes assignments for all processors. This
avoids the need for waiting for the previous processor to finish its
own assignment computation. The indexk of the last region ren-
dered by the previous processor and a potential remainder of a sub-
divided region are determined locally. Performing this computation
in parallel, avoids added time for communication between proces-
sors.

7 COMPOSITING

When all regions are rendered, the partial images are composited.
Compositing is done by using alpha blending/compositing of the
partial images, see Porter and Duff [25]. The compositing scheme

xxx

1.2 3.7 6.1 8.6 11.1 13.5 16.0

Compositing Fetch Image Rendering Subdivision

0
1
2
3

Figure 11: Processor utilization for uniform root-level subdivision.

is illustrated in Figure 9. In the first step, each odd processor sends
its partial image to its lower-indexed neighbor processor that per-
forms the compositing operation. In each subsequent stepi only
those processors that composited an image in the previous step are
considered,i.e., processors with an index of the formk2i. Each
processor having an associated odd value ofk sends its intermedi-
ate partial image to processor(k − 1)2i which performs the next
compositing operation. Because regions are assigned to processors
in back-to-front order, each processor can composite the partial im-
age received from the other processor “over” the region in its own
buffer. At the end of the compositing process, the final image is re-
sides in the buffer of processor zero. When transferring partial im-
ages between processors for compositing, we only transmit pixels
that have been altered during rendering. We do this by transferring
position, color and alpha value for each altered pixel. In the “fetch
buffer” stage this representation is converted to a bitmap.

8 RESULTS

Figure 10 shows the last time step of the “Argon Bubble” data
set. We used this data, which is courtesy of Center for Computa-
tional Sciences and Engineering (CCSE), Ernest Orlando Lawrence
Berkeley National Laboratory, Berkeley, California, for testing our
distribution strategies. It is the result from the last time-step in a
simulation of a shock wave passing through an Argon bubble sur-
rounded by another gas. The visualized scalar field is gas density.
This simulation is stored in AMR format using a hierarchy con-
sisting of 885 grids in three levels. All grids in total consist of
1401504 grid cells. Homogeneous subdivision of the AMR hierar-
chy yields6002 grid regions. Figure 10(a) shows the grid structure.
Figure 10(b) shows the final volume-rendered image.

We tested distribution strategies on the following machines:

Linux Cluster This configuration is a Linux cluster consisting of
four 1.2 GHz Dual-Athlon machines connected via a Gigabit
network. For measurements with four processors, we used a
single CPU on each machine. For measurements with eight
processors, we used both CPUs on each machine. Each ma-
chine has512 MB main memory.

Shared-memory machine This is a PC-based server equipped
with two 2.4 GHz Intel Xeon CPUs using hyper-threading
to obtain four “virtual” CPUs. The used machine has a total
memory of2 GByte RAM. We used a version of MPICH that
supports the shared memory environment on that machine.

IBM SP2 Seaborg is a10 Teraflop IBM SP RS/6000 located at
NERSC’s high-performance computing facility. It consists
of 416 NightHawk II nodes. Each node contains16 IBM
Power3+ processors running at375 MHz and16–64 GBytes
of shared memory. The nodes are interconnected using dual
150 Megabyte/s SP/“GX BusColony” switch adaptors form-
ing a fat-tree topology. We used IBM’s native MPI implemen-
tation.

Figures 11 – 14 show processor utilization for rendering on a
four-processor Linux cluster. As expected, uniform subdivision

7

Submitted to IEEE PVG 2003

(a)

(b)

Figure 10: (a) Grid structure of “Argon Bubble.” The hierarchy consists of885 grids in three levels with a root grid of80 × 32 × 32 cells.
(b) Volume-rendered image of “Argon Bubble.” (Data set courtesy of Center for Computational Sciences and Engineering (CCSE), Ernest
Orlando Lawrence Berkeley National Laboratory, Berkeley, California)

xxx

1.1 3.3 5.5 7.6 9.8 12.0 14.2

Compositing Fetch Image Rendering Subdivision

0
1
2
3

Figure 12: Processor utilization for weighted root-level subdivision.

achieves an uneven utilization of processors. Weighted root-level
subdivision achieves a comparatively even processor utilization,
but it requires longer rendering times than subdivisions working
on homogeneous grid parts. This behavior is due to the over-
head by recursively descending into the hierarchy. Recursive de-
scend also causes non-local memory access pattern resulting in poor
cache utilization. Working only on data of a single grid and avoid-
ing overhead due to data inhomogeneity, homogeneous subdivision
performs better than weighted root-level subdivision, even though
computational cost is not as evenly distributed. Weighted homoge-

xxx

1.0 2.9 4.8 6.7 8.6 10.5 12.4

Compositing Fetch Image Rendering Subdivision

0

1
2
3

Figure 13: Processor utilization for homogeneous subdivision.

neous subdivision resolves this problem and achieves good render-
ing speed while near-uniformly utilizing all processors.

Tables 3 – 5 show rendering times and speedups for rendering
on a Linux cluster and a shared memory machine. Speedups are
measured with respect to rendering the data on a single processor
using homogeneous subdivision. As expected, weighted homoge-
neous subdivision leads to best results of all considered subdivision
schemes. We note that times vary between subsequent runs of our
framework and timings are only accurate within approximately one
second. Considering these facts, the speedup achieved by weighted

8

Submitted to IEEE PVG 2003

Weighted Root-level Homogeneous Weighted Homogeneous
No. of CPUs Time [s] Speedup Time [s] Speedup Time [s] Speedup

1 142.10 1.00 125.45 1.00 124.98 1.00
4 39.87 3.56 36.25 3.46 33.83 3.69
8 21.67 6.55 19.81 6.33 17.89 6.98
16 11.61 12.23 12.93 9.70 8.79 14.21
32 7.88 18.03 7.31 17.16 6.24 20.02
64 5.42 26.21 6.22 20.16 2.97 42.08
128 3.09 45.98 3.83 32.75 1.98 63.12
256 2.07 68.64 1.48 84.76 1.53 81.68
512 1.66 85.60 1.27 98.77 1.37 91.22

Table 6: Rendering times on IBM SP2.

0.9 2.7 4.5 6.3 8.1 9.9 11.7

Compositing Fetch Image Rendering Subdivision

0
1
2
3

Figure 14: Processor utilization for weighted homogeneous subdi-
vision.

Subdivision Strategy Time [s] Speedup
Uniform 14.90 2.56

Weighted Root-level 14.67 2.61
Homogeneous 12.35 3.10

Weighted Homogeneous 11.95 3.20

Table 3: Rendering times on Linux Cluster using four CPUs.

Subdivision Strategy Time [s] Speedup
Uniform 7.83 4.89

Weighted Root-level 7.50 5.10
Homogeneous 7.10 5.39

Weighted Homogeneous 6.21 6.16

Table 4: Rendering times on Linux Cluster using eight CPUs.

homogeneous subdivision is satisfactory.
Table 6 shows rendering times on an IBM SP2. These measure-

ments are of “strong scaling” behavior whereby the problem size
remains fixed as the number of processors is increased. This typ-
ically results in less flattering scaling efficiency than if the prob-
lem size was scaled to be proportional to the number of processors
as is the case for “weak scaling” studies. Timing granularity for
large-scale parallel applications is typically on the order of approxi-
mately one second. Thus, results utilizing more than128 processors
on that system have a lower degree of confidence than the smaller
tests. Starting with256 processors, homogeneous subdivision sur-
prisingly performs better than weighted homogeneous subdivision.
The difference in the performance of the models for the very large
scale runs is less than the timing granularity, so we only have lim-
ited confidence that these effects are actually real rather than being
timing artifacts. However, that being said, we believe these timings
are consistent with the observation that the time required for as-
signing regions to processors is higher for weighted homogeneous
subdivision. While rendering time on each processor decreases for
a larger number of processors, the time spend computing the sub-
division becomes the dominant computational cost. It is also possi-
ble that the granularity of work that can be assigned becomes large

Subdivision Strategy Time [s] Speedup
Uniform 14.76 2.59

Weighted Root-level 14.60 2.62
Homogeneous 12.16 3.14

Weighted Homogeneous 11.23 3.40

Table 5: Rendering times on shared-memory machine.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600

S
pe

ed
up

Number of Processors

Weighted Root-level
Homogeneous

Weighted Homogeneous

Figure 15: Speedup as function of number of processors (IBM
SP2).

compared to the total amount of work that is assigned to each pro-
cessor — offering less benefit to these fine-grained optimizations.

9 CONCLUSIONS AND FUTURE WORK

We have implemented an compared several distribution strategies
for direct volume rendering of AMR hierarchies. Homogeneous
subdivision supports efficient rendering of AMR data for different
classes of machines. It allows us to avoid data duplication and em-
ploy a wide variety of rendering schemes. Homogenizing an AMR
hierarchy has also been used for a variety of hardware-accelerated
methods for volume-rendering AMR data While weighted homo-
geneous subdivision of the domain results in near-uniform pro-
cessor utilization, we plan to improve the approximation of rel-
ative cell weights. It may be beneficial to use view-dependent
weights. We intend to consider inhomogeneous PC clusters con-
sisting of machines with varying processor speed and develop sub-
division/distribution methods that take these differences in machine
performance into account. Furthermore, we plan to develop a
communication-less subdivision strategy that avoids the need for

9

Submitted to IEEE PVG 2003

each processor to compute assignments for all other processors, re-
sulting in less overhead and better scalability. During compositing,
a major portion of time is spent on sending and receiving partial
images. We plan to reduce this overhead by encoding partial im-
ages more efficiently using, for example, run-length encoding. We
intend to implement binary-swap compositing [19] and compare its
results to ours.

ACKNOWLEDGMENTS

We thank Hartmut Sprengart from the Centrum für Produktionstechnik
(CCK)/Lehrstuhl f̈ur Fertigungstechnik und Betriebsorganisation (FBK) for
permission to use their shared-memory Intel-Xeon machine. This work was supported
by the Stiftung Rheinland-Pfalz für Innovation; by the Director, Office of Science,
of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098;
the National Science Foundation under contract ACI 9624034 (CAREER Award),
through the Large Scientific and Software Data Set Visualization (LSSDSV) program
under contract ACI 9982251, and through the National Partnership for Advanced
Computational Infrastructure (NPACI); the National Institute of Mental Health and
the National Science Foundation under contract NIMH 2 P20 MH60975-06A2; and
the Lawrence Berkeley National Laboratory.

We thank the members of the AG Graphische Datenverarbeitung und Computer-
geometrie at the Department of Computer Science at the University of Kaiserslautern,
Germany, the Visualization and Graphics Research Group at the Center for Image Pro-
cessing and Integrated Computing (CIPIC) at the University of California, Davis, and
the Visualization Group at the Lawrence Berkeley National Laboratory.

REFERENCES

[1] Jon Louis Bentley. Multidimensional binary search trees used for associative
searching.Communications of the ACM, 18(9):509–517, September 1975.

[2] Marsha Berger and Phillip Colella. Local adaptive mesh refinement for shock
hydrodynamics. Journal of Computational Physics, 82:64–84, May 1989.
Lawrence Livermore National Laboratory, Technical Report No. UCRL-97196.

[3] Marsha Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic
partial differential equations.Journal of Computational Physics, 53:484–512,
March 1984.

[4] Greg L. Bryan. Fluids in the universe: Adaptive mesh refinement in cosmology.
Computing in Science and Engineering, 1(2):46–53, March/April 1999.

[5] Thomas W. Crockett. An introduction to parallel rendering.Parallel Computing,
23(7):819–843, July 1997.

[6] Dan Gordon, Michael A Peterson, and R. Anthony Reynolds. Fast polygon scan
conversion with medical applications.IEEE Computer Graphics and Applica-
tions, 14(6):20–27, November 1994.

[7] Ralf Kähler, Donna Cox, Robert Patterson, Stuart Levy, Hans-Christian Hege,
and Tom Abel. Rendering the first star in the universe – a case study. In: Robert J.
Moorhead, Markus Gross, and Kenneth I. Joy, editors,IEEE Visualization 2002,
pages 537–540, IEEE, IEEE Computer Society Press, Los Alamitos, California,
2002.

[8] Ralf Kähler and Hans-Christian Hege. Interactive volume rendering of
adaptive mesh refinement data. Technical Report ZR-01-30, Zuse Insti-
tur Berlin (ZIB), Berlin, Germany, 2001. Appeared inThe Visual Com-
puter [9]. Available asftp://ftp.zib.de/pub/zib-publications/
reports/ZR-01-30.pdf .

[9] Ralf Kähler and Hans-Christian Hege. Texture-based volume rendering of adap-
tive mesh refinement data.The Visual Computer, 18(8):481–492, 2002.

[10] Ralf Kähler, Mark Simon, and Hans-Christian Hege. Fast volume render-
ing of sparse high-resolution datasets using adaptive mesh refinement hierar-
chies. Technical Report ZR-01-25, Zuse Institur Berlin (ZIB), Berlin, Ger-
many, 2001. To appear in IEEE Transactions on Visualization and Computer
Graphics. Available asftp://ftp.zib.de/pub/zib-publications/
reports/ZR-01-25.pdf .

[11] Arie Kaufman. Efficient algorithms for scan-converting 3d polygons.Computers
& Graphics, 12(2):213–219, 1988.

[12] Oliver Kreylos, Gunther H. Weber, E. Wes Bethel, John M. Shalf, Bernd
Hamann, and Kenneth I. Joy. Remote interactive direct volume rendering of amr
data. Technical Report LBNL 49954, Lawrence Berkeley National Laboratory,
2002.

[13] David Laur and Pat Hanrahan. Hierachical splatting: A progressive refinement
algorithm for volume rendering.Computer Grahpics (Proceedings of ACM SIG-
GRAPH 91), 25(4):285–288, July 1991.

[14] Marc Levoy. Display of surfaces from volume data.IEEE Computer Graphics
and Applications, 8(3):29–37, May 1988. (See also corrigendum [15,30]).

[15] Marc Levoy. Letter to the editor: Error in volume rendering paper was in expo-
sition only. IEEE Computer Graphics and Applications, 20(4):6–6, July/August
2000.

[16] Terry J. Ligocki, Brian Van Straalen, John M. Shalf, Gunther H. Weber, and
Bernd Hamann. A framework for visualizing hierarchical computations. In:
Gerald Farin, Bernd Hamann, and Hans Hagen, editors,Hierarchical and Ge-
ometrical Methods in Scientific Visualization, pages 197–204. Springer Verlag,
Heidelberg, Germany, January 2003.

[17] Kwan-Liu Ma. Parallel rendering of 3D AMR data on the SGI/Cray T3E. In:
Proceedings of Frontiers ’99 the Seventh Symposium on the Frontiers of Mas-
sively Parallel Computation, pages 138–145, IEEE, IEEE Computer Society
Press, Los Alamitos, California, February 1999.

[18] Kwan-Liu Ma and Thomas W. Crockett. A scalable parallel cell-projection vol-
ume rendering algorithm for three-dimensional unstructured data. In: James
Painter, Gordon Stoll, and Kwan-Liu Ma, editors,IEEE Parallel Rendering Sym-
posium, pages 95–104, IEEE, IEEE Computer Society Press, Los Alamitos, Cal-
ifornia, November 1997.

[19] Kwan-Liu Ma, James S. Painter, Charles D. Hansen, and Michael F. Krogh. Par-
allel volume rendering using binary-swap composition.IEEE Computer Graph-
ics and Applications, 14(2):59–67, July 1994.

[20] Peter MacNeice, Kevin M. Olson, Clark Mobarry, Rosalinda de Fainchtein, and
Charles Packer. Paramesh: A parallel adaptive mesh refinement community
toolkit. Computer Physics Communications, 126(3):330–354, April 2000.

[21] Nelson L. Max. Sorting for polyhedron compositing. In: Hans Hagen, Heinrich
Müller, and Gregory M. Nielson, editors,Focus on Scientific Visualization, pages
259–268. Springer-Verlag, New York, New York, 1993.

[22] Nelson L. Max. Optical models for volume rendering.IEEE Transactions on
Computer Graphics, 1(2):99–108, 1995.

[23] Michael L. Norman, John M. Shalf, Stuart Levy, and Greg Daues. Diving deep:
Data management and visualization strategies for adaptive mesh refinement sim-
ulations.Computing in Science and Engineering, 1(4):36–47, July/August 1999.

[24] Sanghun Park, Chandrajit Bajaj, and Vinay Siddavanahalli. Case study: Inter-
active rendering of adaptive mesh refinement data. In: Robert J. Moorhead,
Markus Gross, and Kenneth I. Joy, editors,IEEE Visualization 2002, pages 521–
524, IEEE, IEEE Computer Society Press, Los Alamitos, California, 2002.

[25] Thomas Porter and Tom Duff. Compositing digital images.Computer Graphics
(Proceedings of ACM SIGGRAPH 84), 18(3):253–259, July 1984.

[26] Paolo Sabella. A rendering algorithm for visualizing3D scalar fields.Computer
Graphics (Proceedings of ACM SIGGRAPH 88), 22(4):51–58, 1988.

[27] Gunther H. Weber, Hans Hagen, Bernd Hamann, Kenneth I. Joy, Terry J. Ligocki,
Kwan-Liu Ma, and John M. Shalf. Visualization of adaptive mesh refinement
data. In: Robert F. Erbacher, Philip C. Chen, Jonathan C. Roberts, Craig M.
Wittenbrink, and Matti Groehn, editors,Proceedings of the SPIE (Visual Data
Exploration and Analysis VIII, San Jose, CA, USA, Jan 22–23), volume 4302,
pages 121–132, SPIE, SPIE – The International Society for Optical Engineering,
Bellingham, WA, January 2001.

[28] Gunther H. Weber, Oliver Kreylos, Terry J. Ligocki, John M. Shalf, Hans Hagen,
Bernd Hamann, and Kenneth I. Joy. Extraction of crack-free isosurfaces from
adaptive mesh refinement data. In: David S. Ebert, Jean M. Favre, and Ronny
Peikert, editors,Proceedings of the Joint EUROGRAPHICS and IEEE TCVG
Symposium on Visualization, Ascona, Switzerland, May 28–31, 2001, pages 25–
34, 335, Springer Verlag, Wien, Austria, May 2001.

[29] Gunther H. Weber, Oliver Kreylos, Terry J. Ligocki, John M. Shalf, Hans Hagen,
Bernd Hamann, Kenneth I. Joy, and Kwan-Liu Ma. High-quality volume render-
ing of adaptive mesh refinement data. In: Thomas Ertl, Bernd Girod, Günther
Greiner, Heinrich Niemann, and Hans-Peter Seidel, editors,Vision, Modeling,
and Visualization 2001, pages 121–128, 522. Akademische Verlagsgesellschaft
Aka GmbH, Berlin, Germany and IOS Press BV, Amsterdam, Netherlands,
November 2001.

[30] Craig Wittenbrink, Tom Malzbender, and Mike Goss. Letter to the editor: In-
terpolation for volume rendering.IEEE Computer Graphics and Applications,
20(5):6–6, September/October 2000.

10

